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Billions of distributed, heterogeneous and resource constrained IoT devices deploy on-device machine learning (ML) for private,

fast and offline inference on personal data. On-device ML is highly context dependent, and sensitive to user, usage, hardware

and environment attributes. This sensitivity and the propensity towards bias in ML makes it important to study bias in on-device

settings. Our study is one of the first investigations of bias in this emerging domain, and lays important foundations for building

fairer on-device ML. We apply a software engineering lens, investigating the propagation of bias through design choices in

on-device ML workflows. We first identify reliability bias as a source of unfairness and propose a measure to quantify it. We

then conduct empirical experiments for a keyword spotting task to show how complex and interacting technical design choices

amplify and propagate reliability bias. Our results validate that design choices made during model training, like the sample

rate and input feature type, and choices made to optimize models, like light-weight architectures, the pruning learning rate

and pruning sparsity, can result in disparate predictive performance across male and female groups. Based on our findings we

suggest low effort strategies for engineers to mitigate bias in on-device ML.

CCS Concepts: • Software and its engineering → Software creation and management; • Computing methodologies →

Machine learning; • Hardware → Analysis and design of emerging devices and systems; • General and reference →

Reliability.

Additional Key Words and Phrases: bias, on-device machine learning, embedded machine learning, design choices, fairness,

audio keyword spotting, personal data

1 INTRODUCTION

Rising concerns about digital privacy and personal data protection [43] are motivating a shift in data processing

and machine learning (ML) from cloud servers to end devices [10]. On-device ML is an emerging computing

paradigm that makes this shift possible [3]. In contrast to ML on centralized cloud-servers, on-device ML processes

data directly on the device that collected them. This has important gains for privacy: if the data never leaves the

device, the potential for unsolicited use or abuse by third parties is greatly reduced. Additionally, by eliminating

data transfer during inference, on-device ML enables instantaneous, continuous and offline data processing, making

it possible to operate devices in an always-on mode.

From earphones to embedded cameras, billions of tiny devices across the globe deploy on-device ML for

inference on personal data. However, a growing body of research shows that ML systems are prone to bias [40, 46],

and can lead to unfair predictions that favour or are prejudiced against particular groups of people. Bias in ML

is concerning, as it can result in decisions that inflict harm on people, oftentimes vulnerable groups or minority
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populations [4]. Uber’s fatal self-driving car crash in 2018 [20] acts as a stark reminder of the consequences of

unchecked bias. The crash, which killed a pedestrian, was attributed to software design decisions which resulted

in a series of misclassifications of the crash victim by Uber’s ML system [32]. In the case of on-device ML, bias

affects system reliability, that is to say the ability of on-device ML to "deliver stable and predictable performance

in expected [operating] conditions" [11]. Unexpected system failures can result in products and services that inflict

harm on users or the public. To our knowledge, no prior studies have considered whether on-device ML systems

are equally reliable for all users, that is to say, whether they are biased.

In this paper we study bias in on-device ML. We approach the topic from a software engineering lens, and

investigate the emergence of bias in the on-device ML workflow. On-device ML presents a unique development

environment. While the cloud offers limitless computing resources, on-device ML needs to account for the inherent

hardware constraints of end devices: limited memory, compute and energy resources [14]. Developers aim to

retain predictive accuracy while overcoming these constraints with engineering interventions in the on-device ML

workflow. Engineering interventions demand that developers make design choices during product development.

In previous work we investigated the impact of pre-processing parameter design choices in a keyword spotting

task [59]. The study found that pre-processing parameters have a statistically significant impact not only on

accuracy, but also on bias. The effect is more pronounced for light-weight neural network architectures and at

lower sample rates, making this a relevant insight for the development of on-device ML. Informed by that work,

we hypothesize that interdependent engineering design choices and unpredictable operating contexts can result

in unexpected performance disparities between user groups in on-device ML applications. This paper builds on

our previous study in three ways: 1) We develop a decision map of on-device ML to consider design choices in

the development workflow systematically. 2) We expand our keyword spotting experiments on pre-processing

parameters to more datasets and languages. 3) We conduct experiments to study bias due to design choices made

during model compression.

Our paper is the first study of bias in on-device ML workflows, and makes the following contributions:

(1) We present a decision map to help developers identify design choices in the on-device ML workflow (§3).

(2) We identify and quantify metrics to evaluate reliability bias (§4).

(3) We empirically show that design choices made during model training (§6.1) and model optimization (§6.2)

can amplify and propagate disparate performance across user groups, and thus reliability bias.

(4) We suggest strategies for mitigating reliability bias without compromising accuracy (§7).

The paper starts with an overview of background knowledge and related work in §2. We then present an

overview of on-device ML and design choices arising during on-device ML development in §3. In §4 we define

and quantify reliability bias. In §5 we introduce an empirical study of an audio keyword spotting task. We present

our experimental results in §6, and propose strategies for mitigating reliability bias in §7. Finally we discuss the

implications of our work for the development of fairer on-device ML in §8 and conclude in §9.

2 BACKGROUND AND RELATED WORK

Bias in ML software engineering is a new area of research. In this section we thus present interdisciplinary

background literature on fairness and bias in ML. We define the concepts that we use in this work, and discuss

bias measures and their limitations. We then highlight perspectives on bias in ML development from software

engineering and statistical learning, with a focus on the impact of design choices.

2.1 Bias and Fairness in Machine Learning

2.1.1 Concepts and Definitions. Fairness in decision-making systems is considered as the "absence of any

prejudice or favouritism toward an individual or a group based on their inherent or acquired characteristics" [40].

Biases in a system can render it unfair, and result in different individuals or groups of individuals being treated
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differently. If individuals belong to a protected class (e.g. based on their nationality, gender, socio-economic status

or age) and they experience differential treatment that disadvantages them based on their membership in that class,

this is considered discrimination and can carry legal consequences [12]. An example of discrimination is denying

an individual a home loan based on their gender. Bias can (but does not necessarily) lead to discrimination. We

consider systems to be fairer and more inclusive if they are less biased. Practically, building ML systems that have

no bias is difficult and maybe even impossible. However, quantifying and reducing bias are attainable and important

steps towards building more inclusive and fairer ML systems.

2.1.2 Bias Measures. To measure bias, researchers in ML have quantified fairness measures that operationalize

fairness definitions. Fairness definitions are categorized as measuring individual or group fairness [40]. Individual

fairness measures require that similar people are treated similarly, while group fairness measures require that

different groups are treated similarly. Verma and Rubin [63] broadly categorise fairness measures into statistical

(parity) measures, similarity-based measures and causal reasoning. Most statistical measures rely on metrics that

calculate various ratios from error rates and prediction outcomes. A bias evaluation then establishes if metrics are

equal for members of protected and unprotected groups. Equalised odds [19], for example, is a fairness measure

that establishes if protected and unprotected groups have the same false negative and false positive error rates.

Fairness measures can be further categorized as bias preserving and bias transforming, based on the measure’s

treatment of historic biases [65]. Parity-based fairness measures require equal error rates between groups of people.

They are considered bias preserving as they propagate historic bias, for example through data labelling decisions

which can replicate a biased world-view. Wachter et al. [65] argue that to support the objective of substantive

equality in European non-discrimination law, fairness measures should be bias transforming. However, if labels can

be exactly known, no historic bias exists, known performance disparities are legally justified or where systems are

designed to replicate social bias, for example for the purpose of debugging, then bias preserving fairness measures

are sufficient. In many on-device ML applications, such as wake-word detection, keyword spotting, object detection

and speaker verification, data labels are exactly known and undisputed. We consider parity-based measures as

useful measures of bias in this context. In §4 we introduce a parity-based bias measure that we use to quantify

performance disparities between user groups in on-device ML.

2.2 Bias in the Machine Learning Workflow

2.2.1 Evidence of Bias in Decision-Making Systems. The algorithmic fairness literature has focused predom-

inantly on studying bias in ML systems for classification tasks, with a particular view towards the proliferation of

decision-making systems that increasingly dominate public life [40]. Many studies have revealed evidence of bias in

ML applications, ranging from natural language processing [5] and gender classification [6] to face recognition [49]

and automatic speech recognition [31, 58]. As on-device ML is used for similar tasks, and leverages algorithmic

approaches and data processing techniques from ML, it is necessary to investigate bias in on-device ML.

2.2.2 Bias as a Concern for ML System Quality. Recent work in software engineering has highlighted the

need to model quality aspects of ML systems in detail [54]. Bias has been identified as a new concern affecting

ML software quality that should be considered as a non-functional requirement during development [25]. In

requirements engineering and quality modeling, bias considerations are allocated to data-related aspects [54, 64].

However, from the perspective of statistical learning problems, bias can come from the training data, the predictive

model and the evaluation mechanism [41]. The engineering and design nature of on-device ML requires an

expanded view on bias to what is currently offered by the software engineering and statistical learning perspectives

individually. Firstly, the bias of a component cannot be considered in isolation but must be considered within the

evolving and dynamic system in which it is incorporated. Secondly, bias is not only a data concern. In reality,

bias can emerge at different stages in the ML workflow and create reinforcing feedback loops [53]. This paper
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expands current perspectives on bias in software engineering by studying how design decisions in the ML workflow

influence bias.

2.2.3 Bias Propagation through Design Choices and System Composition. Design choices play an

important role in mitigating or propagating bias in the ML workflow. Mehrabi et. al [40] consider bias mitigation

measures at different stages of the ML workflow: during pre-processing, in-processing and post-processing. This

perspective aligns well with studies that consider the effects of design choices on ML bias in software engineering.

For example, Hort and Sarro [26] show how choosing thresholds for categorical data, a pre-processing decision,

can impact both the degree of bias, and which groups are favoured. The Fair-SMOTE algorithm, on the other hand,

is a pre-processing intervention that removes biased data labels and balances the training data distribution based on

sensitive attributes and class labels [8]. In on-device ML settings, trained ML models also undergo multiple post-

processing steps to overcome resource constraints for on-device deployment and distribution shifts due to context

heterogeneity. Some of these post-processing steps, like domain adaptation [55] and model compression [24], have

been found to be biased.

Holstein et. al [23] have observed that developers can feel a sense of unease at the societal impacts that their

technical choices have, while Toussaint et. al [60] have shown that early collaboration between clinical stakeholders

and AI developers is important to guide design decisions to support social objectives within the public health sector.

Dobbe et. al [16] examine the impact of design choices on safety in AI systems for socio-technical decision-making

in high-stakes social domains. Rather than looking at specific low-level technical choices in the ML workflow, they

consider situations in which technical choices that promote different values are difficult to compare. They argue

that developers ought to adopt diagnostic practices to proactively anticipate these choices and resolve them through

feedback with stakeholders. Neglecting to do this, the authors further argue, gives rise to socio-technical gaps,

where the technical functions do not satisfy the social requirements of AI systems. Drawing on these perspectives,

this paper considers pre- and post-processing design decisions that arise in the inherently constrained on-device

ML context, and examines the extent to which a relatively comprehensive set of design choices can support the

social requirement for inclusive on-device ML.

3 ON-DEVICE MACHINE LEARNING SYSTEMS

Having laid the foundations for bias in ML, and the importance of design choices in propagating or mitigating bias

in ML development, we turn our focus to on-device ML. Heterogeneous devices, diverse users and unknown usage

environments make the performance of on-device ML highly context dependent. During development, engineers

are faced with a large number of decisions to choose interventions that overcome hardware constraints and meet

operational demands. Collectively, constraints and context-dependency make on-device ML development a complex

engineering undertaking that requires mastery of hardware, software engineering and data processing techniques,

alongside an in-depth understanding of the application context. In this section we provide an overview of the data

processing workflow for on-device ML systems, and highlight the various constraints, intervention strategies and

design choices that an engineer encounters while designing on-device ML systems in practice.

3.1 Data Processing Workflow for On-device ML

The key processing steps during on-device ML development are model training, interventions, and inference. A

typical data processing pipeline for on-device ML, as shown in Figure 1, consists of familiar ML processing steps

for model training, evaluation, selection and inference. Key differences between on-device ML and cloud-based ML

development arise due to the low compute, memory and power resources of end devices [14]. To enable on-device

inference, interventions are needed to optimize a trained model and its data processing pipeline for on-device

deployment. These aspects are described in greater detail below.
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Fig. 1. Data processing pipeline for on-device machine learning development

3.1.1 Training. The dominant approach for developing on-device ML is to delegate resource-intensive model

training to the cloud, and to deploy trained and optimized models to devices [14]. The approach for training models

is similar to typical ML pipelines: input data is gathered and undergoes a number of pre-processing operations to

extract features from it. Thereafter, ML models are trained, evaluated and selected after optimizing a loss function

on the data. Pre-trained models can also be downloaded and used if training data or training compute resources are

not available.

3.1.2 Interventions. The key differences between on-device ML and cloud-based ML development arise due

to the low compute, memory and power resources of end devices [14]. To enable on-device deployment of the

trained model, various interventions are needed to optimize the model and its data processing pipeline. Common

interventions include techniques such as model pruning, model quantization, or input scaling; all of which are aimed

at optimizing device-specific performance metrics such as response time or latency [2], memory consumption [17],

or energy expenditure [68] with minimal impact on the model’s accuracy. We elaborate on these intervention

approaches in §3.2.

3.1.3 Inference. Once deployed, the trained and optimized model is used to make real-time, on-device predic-

tions. On-device inference performance is determined by the model training process, from data collection to model

selection, and the real-time sensor data input, but also by deployment constraints and interventions applied to the

model.

3.2 Design Choices in On-device ML Engineering

Building on the on-device data processing workflow that we described, we now discuss the key design choices that

an engineer has to make in this workflow. We first explain the constraints of on-device ML that necessitate these

design choices, and thereafter discuss the various interventions that can be taken to satisfy these constraints. We

also highlight how these interventions could impact the accuracy and bias of on-device ML models.

3.2.1 Deployment Constraints. On-device ML development needs to take into account the limited memory,

compute and energy resources of the end devices [14]. The available storage and runtime memory on a device

limits the size of the ML models that can be deployed on it. The execution speed of inferences on the device

is directly tied to the available compute resources. Moreover, the amount of computations required by a model

has a direct relation to its energy consumption; given that many end devices are battery powered with limited

energy resources, it becomes imperative that ML models operate within a reasonable energy budget. In addition to

these resource constraints, on-device ML also has to deal with variations in the hardware and software stacks of

heterogeneous user devices [3]. For instance, prior research [38] has shown that different sensor-enabled devices
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can produce data at different sampling rates owing to their underlying sensor technology and real-time system state.

Such variations can impact the quality of sensor data that is fed to the ML model, which in turn can impact its

prediction performance.

3.2.2 Interventions. Research in on-device ML is largely concerned with overcoming these constraints and

satisfying hardware-based performance metrics while achieving acceptable predictive performance [14]. Prior

works have developed interventions to overcome memory and compute limitations, such as weight quantization [17]

and pruning [35]. Other approaches such as input filtering and early exit [27], partial execution and model

partitioning [13] allow for dynamic and conditional computation of the ML model depending on the available

system resources. Another commonly used alternative to satisfy resource constraints is to design light-weight

architectures that reduce the model footprint [7, 68]. Finally, solutions have been proposed to make ML models

robust to different resolutions of the input data [42], which is a key to dealing with sampling rate variations in end

devices. Common to all these interventions is that they trade-off a model’s resource efficiency with its prediction

performance. For example, model pruning or the use of light-weight neural architectures can result in a model

with smaller memory footprint and faster inference speed, however it comes at the expense of a slight accuracy

degradation [7, 35, 68].

3.2.3 Design choices. To build on-device ML, software engineers need to navigate deployment constraints

and interventions alongside ML training and deployment. This is technically challenging, and charges engineers

with the responsibility to take design actions and make design choices at each development step. Importantly,

as on-device deployment constraints require interventions in the development process, design choices like the

choice of model architecture, sample rate, input features and model compression techniques affect predictive

and hardware performance, as well as bias [59]. Even though some design choices can be optimized through

automated experimentation, iterating through all possible values requires extensive computing resources and time.

This increases the cost of training. In countries and contexts where the low cost of on-device ML is a key enabler

and driver for technology adoption [29] increased training costs reduce technology access. Moreover, each design

choice can introduce bias into the system. If time or compute are limited, engineers may need to limit the extent of

their experimentation and only focus on a small set of choices.

We visualize some of the key design choices as a decision map in Figure 2. The availability of training data is a

logical starting point during development, as it determines whether a new model can be trained, or if a pre-trained

model must be downloaded. Once an engineer commits to the design action of training a new model, they are

confronted with design choices to select an algorithm, hyper-parameters, input features, pre-processing parameters

and a data sample rate. After training or downloading the model, the engineer needs to determine if it fits within

the memory, compute and power budget. If it does, they can deploy the model to make predictions. If the model

does not fit within the hardware budget, the engineer must take design actions to optimize the model and reduce its

resource requirements. This can be done through interventions like training a more light-weight architecture or

compressing the model. These choices present further sub-choices, for example model compression can be done

with pruning, quantization or both. In comparison to quantization, pruning involves more hyper-parameters and

thus requires more design choices. Each design choice modifies the model, and has the potential of introducing bias

in its predictions.

4 BIAS IN ON-DEVICE ML

On-device ML systems are deployed on billions of personal and low resource devices that continuously capture and

monitor individuals or groups of people and the environment. In such cyber-physical systems (CPS) of distributed

devices, ML functions mechanistically and is constructed from and activated by personal data collected with

sensors. ML models can be seen as technical components of CPS, which along with other hardware and software

ACM Trans. Softw. Eng. Methodol.
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Fig. 2. Decision map of design choices during on-device ML engineering. Yellow chart elements are design choices

studied in this paper.

components affect the system’s functionality. Adopting a well-established definition1 of reliability for trustworthy

CPS [11], we posit that in order to be reliable and trustworthy, on-device ML should "deliver stable and predictable

performance in expected [operating] conditions". Instead, if ML components fail unexpectedly, devices become

unreliable and users can be inconvenienced or even harmed.

Thus, we define an on-device ML model as biased if it causes devices to have disparate performance across

user groups based on their personal or sensitive attributes. This can lead to devices that unexpectedly fail for some

users, even if they deliver stable and predictable performance for others. If unexpected failures systematically

affect particular users, these users are subjected disproportionately to harms that result from device failure. Biased

on-device ML components thus lead to reliability bias of a device, which then becomes a source of unfairness in the

CPS. While a number of factors can lead to biased ML components, the focus of this work is to study how design

choices during on-device ML development (see Figure 2) impact the model’s accuracy for different demographic

user groups, and thus propagate reliability bias.

4.1 Quantifying Reliability Bias

We consider an on-device ML model a reliable device component for a group if the group’s predictive performance

equals the model’s overall predictive performance across all groups. If a model performs better or worse than

average for a group, we consider it to be biased, showing favour for or prejudice against that group. Both favouritism

and prejudice increase reliability bias. We want to operationalize reliability bias with a measure that captures these

definitions and penalizes favouritism and prejudice equally. Additionally, the measure should be able to score

models as being more or less biased, and should consider positive and negative prediction outcomes. Given these

requirements, we first define bias of a model with respect to a group � (� = 1 . . . � ) as:

����� = ��

(

��� � ��������

��� � ��������������

)

(1)

1This definition has been adopted in the Cyper-Physical Systems Framework proposed by the National Institute of Standards and Technology in

the United States
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where ��� � �������� is a metric computed for data samples belonging to the ��ℎ group, and ��� � ��������������
is computed for all samples in the test set. ����� is 0 when a model is unbiased towards group �, negative when it

performs worse than average and positive when it performs better than average for the group. The magnitude of the

measure is equal for a performance ratio and it’s inverse, as ��(�) = −��( 1
�
). This has intuitive appeal that supports

the interpretability of our measure: ����� is equal in magnitude but has opposing signs for groups that perform half

as good and twice as good as average. Given the group bias scores, reliability bias is the sum of absolute score

values across all groups:

����������� ���� =

�︁

�=1

|����� | (2)

In this paper we assume that all groups are equally important. The ����������� ���� measure is thus unweighted

and does not take group size into consideration. ����������� ���� has a lower bound of 0, and an infinite upper limit.

Lower scores are preferred and signify that the performance across all groups is similar to the overall performance.

We now turn towards an empirical audio keyword spotting (KWS) study to show how design choices in the

on-device ML workflow propagate reliability bias.

5 A STUDY ON BIAS IN ON-DEVICE AUDIO KEYWORD SPOTTING

In the remainder of the paper we examine the propagation of bias through design choices in on-device audio

keyword spotting (KWS). KWS systems, which activate voice-based interactions with digital services [50] on smart

speakers and smart phones, are a prominent use case of on-device ML [2]. Voice-based service activation can be

particularly beneficial for increasing access to digital services for individuals who suffer from restricted vision,

mobility and movement, and for emergency response, home and elderly care. Many commercial products now exist

that provide voice-activated urgent response with on-device KWS (e.g. "call help") [47, 62]. Users place confidence

in these products to support them in moments of crisis and provision them with access to critical care services.

Despite the evident societal promise of on-device KWS, human speech signals exhibit variability based on social

and physiological attributes of the speaker [18]. This makes it essential to ensure that systems work reliably for

all users irrespective of their personal attributes such as age and gender. A starting point for ensuring inclusive

on-device audio KWS is to evaluate inference performance for speaker groups with different attributes. In this

study we consider groups based on gender.

Fig. 3. Audio processing pipeline during training and inference

5.1 Overview of Audio Keyword Spotting Task

An audio keyword spotting system as shown in Figure 3 takes a raw speech signal as input and outputs the

keyword(s) present in the signal from a set of predefined keywords. Next we describe the end-to-end training

and inference pipeline for a KWS system, while highlighting (in bold) the various design choices (ref. Figure 2)

available to an ML engineer in this task.

ACM Trans. Softw. Eng. Methodol.
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First, a raw speech signal is sampled from the microphone at a predefined sample rate (e.g., 8KHz, 16KHz) and

split into overlapping, short time duration frames using a sliding window approach. This framing operation requires

specifying a number of pre-processing parameters, which include i) Frame length that defines the duration of

each frame, ii) frame step that indicates the step size by which the sliding window is moved, and iii) window

function which helps in reducing spectral leakage in Discrete Fourier Transform (DFT). Thereafter, each frame

of the speech signal is transformed into input features: first, we apply a DFT to each frame to obtain log-scaled

filter bank features known as log Mel spectrograms. Optionally, log Mel spectrograms can be de-correlated using a

Discrete Cosine Transform to generate Mel Frequency Cepstral Coefficiencts (MFCCs). The number of log Mel

spectrograms and MFCCs is also a designer-chosen parameter, often tuned empirically. Finally, the frame-level

features (log Mel spectrograms or MFCCs) are concatenated across frames and mean-normalized to form a two-

dimensional representation of the speech signal which is used to train a deep neural network classifier, as described

in [9]. This process also involves choosing an appropriate neural network architecture that satisfies the resource

constraints of the deployment device. Optionally, an ML engineer can also choose to optimize the trained neural

network by applying various model compression techniques such as weight pruning (see §3.2)

5.2 Impact of Design Choices and Choice Variables

We now contextualize the design choices in KWS along the lines of the on-device ML workflow presented in §3,

and explain how prior literature has navigated them.

Firstly, the sample rate can be seen as a deployment constraint due to hardware limitations such as microphone

capabilities [42]. Prior works [15, 57] have also used sample rate as a tunable parameter to adjust the power

consumption on an embedded device during data collection. However, to our knowledge, there has been no study

on how the choice of sample rate affects bias of ML models, other than our prior work [59] which is extended by

this research.

The choice of audio pre-processing parameters is known to have an impact on the performance of a KWS model

in an embedded system [42]. Frame length and frame step together determine the temporal dimension of the 2D

features that are fed to a DNN, and the number of log Mel spectrogram or MFCC features determine the length of

features in each time segment. Together, these features influence the dimensions of the input data to the model,

which in turn impacts the number of computations during inference. This insight was used in a recent work named

ePerceptive [42], wherein the authors experimented with different values of frame step to achieve a good trade-off

between inference accuracy and latency. However, there has been no prior work which has explored potential

accuracy-bias trade-offs due to pre-processing parameters.

Unsurprisingly, the model architecture plays an important role in the performance of a KWS system. Performing

inferences on model architectures with fewer parameters takes less time, but could lead to accuracy degradation.

On the contrary, deeper models with a large number of parameters might provide better accuracy, at the expense of

higher inference latency. Prior KWS works [1, 9, 21, 22, 61, 69] have experimented with different architectures to

achieve a good accuracy-latency trade-off. However none of these studies have evaluated bias in KWS systems due

to the choice of model architecture.

Finally, while compressing a trained model for deployment using model pruning, a developer needs to specify a

number of parameters such as final sparsity, pruning frequency, schedule, and learning rate. Final sparsity, specified

in percentage, determines the proportion of weights that will be set to 0 during model pruning. Indeed, a high ‘final

sparsity’ leads to more compressed models, which result in lower storage requirements and reduced inference

latency on the device [33]. A pruning frequency of ‘n’ indicates that the model should be pruned after every

‘n’ training steps. Pruning Schedule can take two values: i) constant sparsity, which indicates the fixed sparsity

level of the model throughout the training, or ii) polynomial decay, where the pruning sparsity grows rapidly

ACM Trans. Softw. Eng. Methodol.



10 • Hutiri, et al.

in the beginning from initial_sparsity, but then plateaus slowly to the final sparsity. Finally, Pruning Learning

Rate controls the step size taken by the model optimizer (e.g., Adam or Stochastic Gradient Descent) during

backpropagation. Prior literature on neural network pruning primarily investigates the impact of final sparsity on

model accuracy [33] and does not shed light on the impact of other pruning parameters. However, given that these

parameters also constitute important design decisions during model optimization, we choose to include them in our

experiments. To our knowledge, the effect of pruning parameters on KWS models running on-device has not been

studied.

5.3 Experiment Design

Having established that prior KWS literature has not adequately studied the impact of design choices on bias,

we set up experiments to investigate design choices related to important design actions for on-device ML: model

training and model optimization. Guided by the on-device ML development workflow presented in §3 and our prior

work [59], we aim to answer the following research questions within the context of an audio KWS task:

(1) How does the choice of architecture affect reliability bias and accuracy?

(2) How does the audio sample rate affect reliability bias and accuracy?

(3) How do pre-processing parameters affect reliability bias and accuracy?

(4) How do pruning parameters affect reliability bias and accuracy?

The various design choices and choice variables are summarized in Table 1 and explained next.

Design action Design choice Choice variable (unit) Variable values

Train new model input features | sample rate sample rate (kHz) 8, 16

Train new model input features | pre-processing feature type log Mel spectrogram, MFCC

Train new model input features | pre-processing # Mel filter banks 20, 26, 32, 40, 60, 80

Train new model input features | pre-processing # MFCCs None, 10, 11, 12, 13, 14

Train new model input features | pre-processing frame length (ms) 20, 25, 30, 40

Train new model input features | pre-processing frame step (% frame length) 40, 50, 60

Train new model input features | pre-processing window function Hamming, Hann

Optimize model light-weight architecture model architecture CNN, low latency CNN [51]

Optimize model model compression | pruning final sparsity (%) 20, 50, 75, 80, 85, 90

Optimize model model compression | pruning pruning frequency 10, 100

Optimize model model compression | pruning pruning schedule constant sparsity, polynomial decay

Optimize model model compression | pruning pruning learning rate 1e-3, 1e-4, 1e-5

Table 1. Overview of design choice variables and values for the audio keyword spotting study

As discussed earlier, the neural network architecture is an important design choice during model training. We

experiment with two convolutional neural network (CNN) architectures for KWS, originally proposed in [51]

and later implemented in the TensorFlow framework. The architecture that we refer to as CNN consists of two

convolutional layers followed by one dense hidden layer, while the low-latency CNN (llCNN) consists of one

convolution layer followed by two dense hidden layers. The authors in [51] showed that the llCNN architecture, by

virtue of having less convolution operations, is more optimized for on-device KWS.

Next, we study choices that affect the input features of the model, namely sample rate and pre-processing

parameters. Audio keyword spotting developer benchmarks often use a 16kHz audio input [39, 67]. In practice
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many devices collect data at a lower sample rate of 8kHz [42] due to hardware constraints. We thus train models

with audio data at two sample rates, 16kHz and 8kHz, for both architectures.

For studying the impact of pre-processing parameters, we take inspiration from prior KWS literature [1, 9, 21, 22,

61, 69], and experiment with two feature types, log Mel spectrograms and MFCCs. More specifically, we vary

the dimensionality of log Mel spectrograms from 20 to 80, and of MFCCs from 10 to 14. We also consider log

Mel spectrograms that are used directly as input features, with no MFCCs. Further, we experiment with three

temporal pre-processing parameters: frame length (20-40 ms), frame step (40%-60% overlap) and the window type

(Hamming/Hann); these values are based on prior on-device KWS works [1, 21, 22, 42, 69].

With regards to model optimization, we focus on model compression, in particular parameter choices during

post-training pruning. Based on prior literature [33, 34], we vary the pruning sparsity from 20% to 90%. For

pruning schedule, we experiment with both constant sparsity and polynomial decay as explained in §5.2. For

learning rate, we choose three values based on prior KWS literature on model training [1, 9, 21, 22, 61, 69]. For

pruning frequency, we used two values: 100 (the default frequency in TensorFlow) and a faster option of 10,

wherein the pruning operation takes place after every 10 training steps.

5.4 Experiment Setup

5.4.1 Datasets. We trained and evaluated models on the following five spoken keywords datasets spanning four

languages — English, German, French, and Kinyarwanda:

Google Speech Commands (google_sc) [67] is an English language dataset consisting of 104,541 spoken keywords

from 35 keyword classes such as Yes, No, One, Two, Three, recorded by volunteer contributors and released at a

16kHz sample rate. We labeled every utterance as male or female using a crowd-sourced data labelling campaign

conducted on Amazon Mechanical Turk. We used the same train, validation and test set splits of 85%, 10%, 5%

respectively from the original dataset. Female speakers constituted 30% of the original training data, 32% of the

validation and 29% of the test data. During training we thus ensured that mini-batches have an equal balance of

male and female speakers by randomly sampling from the male training set.

Multilingual Spoken Words Corpus Datasets [39]. The Multilingual Spoken Words Corpus (MSWC) is a

large corpus of spoken words in 50 languages, originally sampled at 48KHz. Each language partition contains

hundreds of hours of audio data with tens of thousands of keyword classes. MSWC has been derived from Mozilla

Common Voice2 by splitting the crowd-sourced, read-speech corpus into individual words. We chose four of

the languages with the largest data resources in MSWC to create four keyword spotting datasets in different

languages: MSWC English (mswc_en), MSWC German (mswc_de), MSWC French (mswc_fr) and MSWC

Kinyarwanda (mswc_rw). Each of the MSWC datasets was created with data from its language partition, and a

consistent approach to select keywords, balance data across male and female speakers, and split the dataset into

train, validation and test splits.

For each dataset, we selected keywords from the 35 largest keyword classes to create training datasets that are

equivalent to Google Speech Commands. Following the keyword selection strategy of the authors of the MSWC

dataset, we only selected keywords with more than 3 characters. Additionally, if two words started with the same 3

letters, we only selected the first occurring word. This resulted in a total of 200 628 keyword utterances for MSWC

English, 85 572 keyword utterances for MSWC German, 75 644 keyword utterances for MSWC French and 53 608

keyword utterances for MSWC Kinyarwanda. The dataset sizes vary based on the language representation in the

Mozilla Common Voice corpus.

2https://commonvoice.mozilla.org/

ACM Trans. Softw. Eng. Methodol.

https://commonvoice.mozilla.org/


12 • Hutiri, et al.

dataset split MSWC English MSWC German MSWC French MSWC Kinyarwanda

female training 79002 (39%) 34728 (41%) 31127 (41%) 20713 (39%)

male training 79611 (40%) 34329 (40%) 30276 (40%) 21786 (41%)

female validation 10496 (5.2%) 4613 (5.4%) 2790 (3.7%) 3580 (6.7%)

male validation 10238 (5.1%) 3976 (4.6%) 3601 (4.8%) 1801 (3.4%)

female test 10816 (5.4%) 3445 (4%) 3905 (5.2%) 2511 (4.7%)

male test 10465 (5.2%) 4481 (5.2%) 3945 (%) 3217 (6%)

total 200628 85572 75644 53608

Table 2. Audio keyword utterance count (and % of total dataset) across dataset splits for MSWC English, MSWC

German, MSWC French and MSWC Kinyarwanda datasets.

To ensure gender-balanced datasets, we only used keyword utterances where the gender metadata field was male

or female. The gender metadata in Mozilla Common Voice has been provided by data donors and thus corresponds

with the self-identified gender of the speaker. For each keyword we counted the utterances per gender. We included

all utterances/keyword of the gender with fewer utterances/keyword, and randomly sampled the same number of

utterances/keyword from the gender with more utterances/keyword. We joined the selected data for both genders

and all keywords, before splitting the data into train, validation and test sets. To create the dataset splits, we followed

the protocol described in [39] as closely as possible while enforcing gender-balance. We first created a list of

unique keyword-speaker pairs so that train, validation and test sets are separate. Next, we randomly sampled 80%

of keyword-speaker pairs for training. We then randomly sample 10% of keyword-speaker pairs for validation,

excluding pairs already in the training set and rounding to the nearest integer. Finally, we allocated the remaining

keyword-speaker pairs to the test set. The keyword utterance count and representation for male and female genders

across dataset splits are shown in Table 2. During training we ensured that mini-batches have an equal balance of

male and female speakers.

5.4.2 Training Details. Our training setup is implemented in Tensorflow 2.0 and we used a Nvidia V100 GPU

to train the models. For each dataset we iteratively trained models with all combinations of model architectures,

sample rates and pre-processing parameters listed in Table 1. This resulted in 3456 candidate models per dataset,

and a total of 17280 experiments across 5 datasets. We used the TF HParams API3 for tuning the training-time

learning rate for each model from the following three options: {1e-2, 1e-3, 1e-4}. We used the Adam optimizer for

training, with a fixed batch size of 128 samples. Each model was trained for 10 epochs, which was chosen based on

empirical evidence that the model performance did not improve beyond 10 epochs.

Thereafter, we used model selection criteria that consider accuracy and bias (discussed in detail in §7.1) to select

baseline models for model compression. Table 3 lists the number of baseline models selected per dataset for the

pruning experiments. For the Google SC and MSWC Kinyarwanda datasets we could not find models that met all

our selection criteria across architectures and sample rates, which is why fewer baseline models were selected for

these datasets. We then obtained the compressed version of the baseline models under each combination of pruning

parameters listed in Table 1. As with training, we also used 10 epochs for pruning. Our pruning experiments

resulted in 72 pruned models for each baseline model, and a total of 12168 experiments.

5.4.3 Evaluation Protocol. As ground truth labels in audio KWS can be exactly known and are unambiguous,

we assume that labels are correct and unbiased. We can thus evaluate bias with the parity-based reliability bias

measure which we defined in Equation 2. For our experiments we compute two evaluation metrics for each model

3https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams
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Google

SC

MSWC

German

MSWC

English

MSWC

French

MSWC

Kinyarwanda

16kHz CNN 9 9 9 9 6

16kHz llCNN 8 9 9 9 7

8kHz CNN 9 9 9 9 7

8kHz llCNN 9 9 9 9 6

Table 3. Number of baseline models pruned per dataset, architecture and sample rate

on the held-out test set: i) reliability bias and ii) accuracy. For accuracy, we compared five different metrics: Cohen’s

kappa coefficient, precision, recall, weighted F1 score and the Matthews Correlation Coefficient (MCC). The trends

we observed are consistent across metrics. Thus, we only report accuracy results for the MCC, which is a robust

metric for multiclass classification.

6 EMPIRICAL RESULTS AND ANALYSIS

In this section we present the results of our study and analyze the impact of design choices on reliability bias

and accuracy during different stages of the on-device audio KWS workflow. We start with design choices that

arise during model training, first analyzing the impact of the architecture and sample rate, then the impact of

pre-processing parameters. After that we consider model optimization design choices that arise during model

compression, namely the impact of pruning hyper-parameters.

6.1 Design Choices during Model Training

To analyze the impact of the pre-processing parameters, we performed factorial ANOVA tests that allow for

interactions [44] on our balanced study design. This type of statistical test is used to determine the influence of two

or more independent variables on one dependent variable, which makes it suitable for our study. We coded deviation

(or sum) contrasts and used type 3 sums of squares. The analysis was done in python using the ����� �����������

package and is available as a jupyter notebook on github 4. Given the large number of possible interactions between

our independent variables (i.e. choice variables in Table 1), we designed the first factorial ANOVA model (see

Model 1 in the Appendix) to consider a subset of interactions that we deemed important for accuracy and reliability

bias of KWS models based on prior visual analysis. We continued to improve the factorial ANOVA models

separately for the two dependent variables (MCC (accuracy) and reliability bias) by removing all non-significant

interactions, and then including lower-level interactions. The final ANOVA models are included in the Appendix,

with Models 2 and 3 capturing variables and interactions of model training design choices on the accuracy score

and reliability bias respectively.

Tables 4 and 5 show statistically significant interaction and main effects of the final factorial ANOVA models.

For completeness we have included main effects even if they already contribute to an interaction. The final factorial

ANOVA models are significant (MCC (accuracy): � (171) = 2527.2, � = 0.0, �2

�� � .
= 0.9615 and reliability bias:

� (92) = 367.95, � = 0.0, �2

�� � .
= 0.6615). For reference, the critical F statistics at p-values less than 0.01 and 0.05

are shown in Table 6. Based on the F statistics, we reject the null hypothesis that neither design choices made during

model training, nor their interactions affect KWS model accuracy and reliability bias. The �2 values indicate that

the accuracy ANOVA model (�2
= 0.9619, �2

�� ������
= 0.9615) better captures the effects than the reliability bias

ANOVA model (�2
= 0.6633, �2

�� ������
= 0.6615), in which a portion of variance in the dependent variable remains

unaccounted for. Next we examine the impact of the model architecture and sample rate, and of the pre-processing

parameters in greater detail.

4https://github.com/akhilmathurs/fair-ondevice-ML
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Factorial ANOVA main and interaction effects SS df F p(<0.05)

model architecture 31.9714 1 6.0103E+04 0.0E+00

sample rate 3.4011 1 6.3938E+03 0.0E+00

dataset 160.1572 4 7.5270E+04 0.0E+00

mfccs 17.2272 5 6.4771E+03 0.0E+00

mel filter banks 3.1283 5 1.1762E+03 0.0E+00

frame step 0.1500 2 1.4103E+02 1.8E-61

model architecture * mel filter banks 0.0202 5 7.6075E+00 3.8E-07

dataset * sample rate * mfccs 0.1425 20 1.3391E+01 7.0E-45

dataset * model architecture * mfccs 0.1056 20 9.9288E+00 3.5E-31

Residual 9.100465 17108 - -

Model - 171 2.5277E+03 0.0E+00

�2: 0.9619

Adjusted �2: 0.9615

Table 4. Significant main and interaction effects of model training design choices on MCC (accuracy). SS=sum of

squares, df=degrees of freedom

Factorial ANOVA main and interaction effects SS df F p(<0.05)

model architecture 0.96734 1 469.248554 1.10E-102

sample rate 0.477009 1 231.393075 6.45E-52

dataset 62.4386 4 7.5721E+03 0.0E+00

mel filter banks 0.1225 5 1.1887E+01 1.7E-11

dataset * sample rate 0.7840 4 9.5078E+01 3.9E-80

dataset * mel filter banks 0.3758 20 9.1140E+00 5.1E-28

dataset * model architecture * mfccs 0.9662 20 2.3436E+01 1.8E-85

Residual 35.4366 17190 - -

Model - 92 3.6795E+02 0.0E+00

�2: 0.6633

Adjusted �2: 0.6615

Table 5. Significant main and interaction effects of model training design choices on reliability bias. SS=sum of

squares, df=degrees of freedom

df 1 2 4 5 8 10 20 40

����� (p<0.01) 4052.1807 98.5025 21.1977 16.2582 11.2586 10.0443 8.0960 7.3141

����� (p<0.05) 161.4476 18.5128 7.7086 6.6079 5.3177 4.9646 4.3512 4.0847

Table 6. Critical F-values for determining significance at p<0.01 and p<0.05 for different degrees of freedom (df)

6.1.1 Impact of Model Architecture and Sample Rate. The results of the statistical tests in Tables 4 and 5

show that model architecture and sample rate contribute to significant interaction effects that impact accuracy and

reliability bias. We now examine how these two metrics are affected by variable values and their interactions.

ACM Trans. Softw. Eng. Methodol.
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Fig. 4. Experimental results of MCC (accuracy) and reliability bias for CNN and low latency CNN model architectures

with 16kHz and 8kHz sample rates trained on 5 different datasets.

Figure 4 shows a boxplot of accuracy and reliability bias for CNN and light-weight low latency CNN (llCNN)

architectures trained on 16kHz and 8kHz audio data. A higher MCC score implies better prediction performance.

The trends in accuracy scores for models trained with different architectures and sample rates are consistent across

datasets. CNN and llCNN architectures trained at 8kHz have a lower median accuracy score (i.e. they are worse)

than those trained at 16kHz, and CNN architectures have higher scores than their light-weight counterparts. While

models trained on the mswc_rw dataset still follow this trend, their performance, in general, is considerably worse

than that of the other models. Possible reasons for this are that less training data was available for these models,

and Kinyarwanda is a different language family than the languages in the other datasets. It is out of the scope of

this study to consider bias due to language and accent, which remains an important area for future work.

For reliability bias we observe that median scores are higher (i.e. worse) for models trained at 8kHz than those for

models trained at 16kHz. For the google_sc, the mswc_de and the mswc_fr datasets, models trained at lower sample

rates also have a higher interquartile range (IQR) in reliability bias scores. The light-weight llCNN architecture

tends to have a higher median reliability bias and greater IQR than the CNN architecture, but the effect is not as

pronounced as for accuracy. Models trained on the mswc_rw dataset do not follow these trends. While median

reliability bias of CNN models is lower than that of llCNN models, 8kHz models are also less biased than 16kHz

models. We anticipate that the deviation between trends observed for the mswc_rw models and the remaining

models contributes significantly to the large effect size of the dataset variable that we observe in Tables 4 and 5.

Delving deeper into these findings, we analyze the relationship between male and female MCC scores across

architectures and sample rates in Figure 5. Each data point represents the disaggregated male and female accuracy

scores of a single model trained with a unique combination of pre-processing parameters. The dotted black diagonal

represents equal performance for male and female speakers. Points above the diagonal perform better for females,
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Fig. 5. Disaggregated MCC (accuracy) scores for males (x-axis) and females (y-axis) for a single model trained

with a unique combination of pre-processing parameters. On the black diagonal the performance is equal for both

subgroups.

and points below perform better for males. For the mswc_de, _en and _fr datasets it is evident that accuracy

scores are biased to favour male speakers. For the mswc_rw dataset, models always favour female speakers. For

the google_sc dataset the results are more nuanced. Models trained with CNN architectures tend to favour male

speakers, whereas models trained with llCNN tend to favor female speakers. This figure shows that the nature of

the training data contributes significantly to bias. We also observe that for each dataset there exist models that

lie on or very close to the diagonal. These models have a lower reliability bias than the remaining models. We

hypothesize that pre-processing parameters contribute to reliability bias, and thus the distance of experiments from

the diagonal. This leads us to the next section, where we analyze the role of pre-processing parameters on accuracy

and reliability bias.

Key insights: Model accuracy is lower at lower sample rates and for light-weight architectures. Median

and IQR of reliability bias tend to be greater at lower sample rates and for light-weight architectures. The

direction of bias is strongly influenced by the training dataset. Overall, male speakers are favoured by models.

An exception to this are models trained on the mswc_rw dataset, which have considerably lower accuracy

and favour female speakers.

6.1.2 Impact of Pre-processing Parameters. Having studied the effect of the architecture and sample rate,

we now turn to pre-processing parameters, the next design choice listed in Table 1. The F statistics and p-values

in Tables 4 and 5 indicate that the dimensions of log Mel spectrograms and MFCC features significantly affect

accuracy and reliability bias. For accuracy there exist interaction effects between Mel filter banks and architecture,

between MFCCs, dataset and sample rate, and between MFCCs, dataset and architecture. The latter interaction

effect also exists for reliability bias, as well as an interaction effect between Mel filter banks and dataset. Figure 6

visualizes accuracy and reliability bias for the six MFCC and log Mel spectrogram dimensions across all datasets

for the 8kHz low latency CNN models. As highlighted earlier, the lower sample rate and light-weight architecture

result in models that experience greater decline in accuracy and reliability bias. We thus anticipate that the impact

of pre-processing parameters is more pronounced for these models.

In Figure 6 the number of MFCC dimensions implies the choice of input feature type. Models with no MFCCs

(i.e. # MFCCs = None) use only log Mel spectrograms as input features. It is clear from the figure that the accuracy

of models trained with log Mel spectrograms (i.e. the blue boxes) is significantly worse than that of models trained

with MFCC input features. For models trained with MFCC features, fewer dimensions (i.e. # MFCCs = 10 or 11)

tend to result in a higher median accuracy than more dimensions. However, the impact of this is much smaller than

that of using log Mel spectrograms. For reliability bias we observe mixed results that depend on the training dataset.

Google_sc, mswc_en and mswc_rw have a lower median reliability bias when using log Mel spectrograms. On

the other hand, for the mswc_de and mswc_fr datasets the median reliability bias is lower for models trained with

ACM Trans. Softw. Eng. Methodol.
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Fig. 6. Effect of MFCC dimensions on accuracy and reliability bias for 8kHz low latency CNN models. Models without

MFCC features (blue), i.e. models that directly use log Mel spectrograms as input features, perform considerably

worse than those that use MFCC features.

MFCC input features. Figure 13 in the Appendix shows comparable results for 16kHz CNN models. Here we still

observe that the median accuracy is lower for log Mel spectrogram input features, except for the google_sc dataset.

This dataset also has a lower median and smaller IQR of reliability bias scores when using log Mel spectrograms.

Overall, the impact of the number of MFCC dimensions and by association the input feature type is less pronounced

for CNN models trained at 16kHz.

Figure 7 visualizes the impact of the number of Mel filter banks on accuracy and reliability bias for low latency

CNN architectures. Figure 14 in the Appendix visualizes results for CNN architectures, which show similar trends.

It is clear that when models use log Mel spectrograms directly as input features (left column), the number of Mel

filter bank dimensions has a critical impact on accuracy: MCC scores deteriorate rapidly as the number of Mel filter

banks increases. The impact on reliability bias is more varied. For the mswc_en and _fr datasets the Mel filter bank

dimensions pose a trade-off between accuracy (models with more filter banks are less accurate) and reliability bias

(models with more filter banks are less biased). Models trained with the google_sc and mswc_de datasets show no

clear trend. Only models trained with the mswc_rw dataset have lower reliability bias for fewer Mel filter banks,

thus allowing developers to choose Mel filter bank dimensions that increase accuracy while reducing bias.

When used with MFCCs, log Mel spectrograms serve a purpose of dimensionality reduction. In contrast to

log Mel spectrogram input features, MFCC features (right column) are robust to the number of Mel filter banks

used across all datasets. Interestingly, when comparing the results of the low latency CNN models trained with

MFCCs in this figure and the CNN models in Figure 14 in the Appendix, the distributions of accuracy scores for

the google_sc and mswc_en datasets have a smaller IQR for the light-weight architecture. This suggests that the

dimensionality reducing effect of the spectrograms can be particularly advantageous for smaller model architectures.

As fewer input dimensions reduce the computational overhead during training and inference, our results present an

opportunity for on-device ML developers: MFCCs that use log Mel spectrograms with fewer filter banks (e.g. 20)

can improve computational efficiency without compromising accuracy or reliability bias.

ACM Trans. Softw. Eng. Methodol.
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Fig. 7. Effect of log Mel spectrogram dimensions (# Mel fbanks) on accuracy and reliability bias, disaggregated by

input feature type for low latency CNN architectures. The number of Mel filter banks clearly impacts models that

directly use log Mel spectrograms as input features.

To gain an appreciation of how pre-processing parameters affect the performance of KWS models for male

and female subgroups, we show the impact of feature type on male and female subgroup accuracy in Figure 8.

For mswc_de, _en and _fr accuracy is always greater for males, irrespective of the feature type. For mswc_rw

the opposite holds true: accuracy is almost always greater for females, irrespective of the feature type. For the

google_sc dataset log Mel spectrograms generate models that have higher accuracy for females than for males,

while MFCC features generate models with lower accuracy for females than males. For the MSWC datasets MFCC

features clearly result in more accurate models for both subgroups while for the google_sc dataset both feature

types generate models with similar maximum accuracy. When training on this dataset the choice of feature type can

thus be a source of reliability bias.

As highlighted by a recent study in the speaker recognition domain [37], only limited feature extractors have

been considered since the adoption of deep neural networks for speech processing tasks. Some prior studies have

noted the limits of log Mel and MFCC based features, and have proposed alternatives. For example, per-channel

energy normalization features have been proposed for robust keyword spotting [66] and power-normalized cepstral

coefficients for robust speech recognition [30]. However, while these studies consider robustness in noisy and

far-field environments, they do not consider bias in their analysis of robustness. Based on our findings we consider

further characterisation of the effect of input features on reliability bias across a wider range of feature extractors

an important area of future work.

Fig. 8. Accuracy scores for males (x-axis) and females (y-axis) for log Mel spectrogram (left) and MFCC (right)

feature types for 8kHz low latency CNN models.
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Key insights: Feature type and dimensions impact KWS accuracy and reliability bias. Their effect is further

influenced by the training dataset. In general, MFCC type features perform better than log Mel spectrograms.

However, they can also increase reliability bias, prejudicing models against females and favouring males. For

MFCC features, fewer dimensions (i.e. cepstral coefficients and Mel filter banks) can reduce computational

demands with a negligible impact on accuracy and reliability bias.

6.2 Design Choices during Model Optimization

We focused our study of model optimization design choices on model compression and in particular model pruning.

Pruning increases model sparsity, which reduces storage, memory and bandwidth requirements when downloading

models to devices. We followed the experimental setup described in §5.4.2 to prune a subset of the most accurate

and least biased models.

To analyze the impact of the pruning hyper-parameters, we performed factorial ANOVA tests to determine the

effects of pruning hyper-parameters on change in reliability bias and change in accuracy due to pruning. The

factorial ANOVA tests were designed following the same process as described for pre-processing parameters

in the previous section. The first factorial ANOVA model (see Model 4 in the Appendix) considers interactions

between all the independent variables, including pruning hyper-parameters, dataset, architecture, sample rate, the

baseline model accuracy and baseline model reliability bias. We continued to improve the factorial ANOVA models

separately for change in accuracy and change in reliability bias by removing all non-significant interactions, and

then including lower-level interactions. The final ANOVA models are included in the Appendix, with Models 5

and 6 capturing variables and interactions of pruning design choices on the change in MCC score and change in

reliability bias respectively.

Tables 7 and 8 show statistically significant interaction and main effects of the final factorial ANOVA models.

For completeness we have included main effects even if they already contribute to an interaction. The final factorial

ANOVA models are significant (change in MCC (accuracy): � (274) = 555.74, � = 0.0, �2

�� � .
= 0.9259 and change

in reliability bias: � (148) = 110.70, � = 0.0, �2

�� � .
= 0.5717). We again point the reader to Table 6 for reference of

the critical F statistics at p-values less than 0.01 and 0.05. Based on the F statistics, we reject the null hypothesis

that KWS model accuracy and reliability bias are unaffected by pruning hyper-parameters and their interactions

during model optimization. As with the statistical analysis of the pre-processing parameters, we found that the �2

values of the change in accuracy ANOVA model (�2
= 0.9276, �2

�� ������
= 0.9259) indicate that this model captures

the effects better than the change in reliability bias ANOVA model (�2
= 0.5769, �2

�� ������
= 0.5717). In the latter

model a portion of the variance in the dependent variable remains unaccounted for. We now examine the impact

of the pruning interaction effects in greater detail. Throughout the analysis we use the terms change in and delta

interchangeably.

6.2.1 Impact of Pruning Hyper-Parameters. The interaction effect between final sparsity and pruning schedule

is visualized in Figure 9. This interaction significantly affects change in reliability bias due to pruning (as per

Table 8). The interaction between final sparsity, pruning schedule and dataset also have a significant effect on

change in accuracy (as per Table 7). The figure highlights several interesting observations. When final sparsities are

low (i.e. 0.2 and 0.5), the median delta MCC and delta reliability bias are close to zero. Furthermore, the delta

MCC and delta reliability bias IQR of models pruned to these sparsities are small. This indicates that these pruned

models have low variability in accuracy and reliability bias and that scores lie close to those of the baseline models.

However, as the final sparsity increases, the median delta MCC becomes more negative (implying lower accuracy

due to pruning) and the IQR increases (indicating greater variability in accuracy due to pruning). Likewise, the

median delta reliability bias and the IQR increase, indicating that models become more biased and that reliability
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Factorial ANOVA main and interaction effects SS df F p(<0.05)

pruning schedule 6.2660 1 2.9467E+03 0.0E+00

reliability bias baseline model 0.7614 1 3.5805E+02 1.1E-78

dataset 6.4134 4 7.5402E+02 0.0E+00

pruning learning rate 89.6026 2 2.1069E+04 0.0E+00

final sparsity 143.5794 5 1.3504E+04 0.0E+00

dataset * pruning schedule * final sparsity 0.2113 20 4.9694E+00 1.9E-12

sample rate * pruning learning rate * final sparsity 0.2759 10 1.2974E+01 7.2E-23

dataset * pruning learning rate * pruning schedule 0.1467 8 8.6237E+00 8.5E-12

dataset * pruning learning rate * final sparsity 2.7539 40 3.2377E+01 3.7E-232

model architecture * pruning learning rate * pruning schedule * final sparsity 0.2685 10 1.2625E+01 3.6E-22

dataset * model architecture * sample rate * final sparsity 0.1929 20 4.5357E+00 6.2E-11

Residual 25.2897 11893 - -

Model - 274 5.5574E+02 0.0E+00

�2 0.9276

Adjusted �2 0.9259

Table 7. Significant main and interaction effects of pruning hyper-parameters on change in MCC (accuracy).

SS=sum of squares, df=degrees of freedom

Factorial ANOVA main and interaction effects SS df F p(<0.05)

model architecture 2.0088 1 2.2874E+02 3.3E-51

pruning learning rate 15.0129 2 8.5475E+02 0.0E+00

final sparsity 23.8760 5 5.4374E+02 0.0E+00

reliability bias baseline model 8.5336 1 9.7171E+02 3.3E-205

dataset 22.9815 4 6.5421E+02 0.0E+00

pruning schedule * final sparsity 1.0450 5 2.3798E+01 6.8E-24

model architecture * final sparsity 2.8381 5 6.4633E+01 8.5E-67

dataset * pruning learning rate * final sparsity 10.8173 40 3.0794E+01 3.2E-220

dataset * model architecture * sample rate * pruning learning rate 1.1197 8 15.937276 1.3E-23

Residual 105.508229 12014 - -

Model - 148 1.1070E+02 0.0E+00

�2 0.5769

Adjusted �2 0.5717

Table 8. Significant main and interaction effects of pruning hyper-parameters on change in reliability bias. SS=sum

of squares, df=degrees of freedom

bias scores become more variable. For all sparsities there are some models that have a positive change in MCC, thus

becoming more accurate, and a negative change in reliability bias, thus becoming less biased, due to pruning. The

polynomial decay pruning schedule results in higher median delta MCC scores and lower median delta reliability
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bias. Polynomial decay also results in smaller IQR of delta reliability bias. These effects become more apparent as

final sparsity increases. For developers polynomial decay is thus a more robust pruning schedule to choose.

Fig. 9. Interaction effect of final sparsity and pruning schedule on change in MCC (accuracy) (left) and change in

reliability bias (right). The polynomial decay (orange) pruning schedule results in higher median change in MCC

scores and lower median change in reliability bias. Polynomial decay also results in smaller IQR of reliability bias.

These effects become more significant as final sparsity increases.

Figure 10 visualizes the interaction effect of final sparsity and the pruning learning rate. As shown in Table 8 this

interaction significantly affects the change in reliability bias due to pruning. Final sparsity and pruning learning

rate also have a significant effect on change in accuracy through interactions with sample rate and with dataset (see

Table 7). At a low final sparsity of 0.2 the learning rate has no impact on the accuracy and bias of pruned models.

As the sparsity increases, this changes dramatically. The smaller the learning rate, the lower the median delta MCC

and the larger its IQR. A lower delta MCC results in a greater accuracy drop due to pruning. Similarly, the smaller

the learning rate, the higher the median delta reliability bias and the larger its IQR. A higher delta reliability bias

results in increase in reliability bias due to pruning. At 90% sparsity the median MCC score of models pruned

with a learning rate of 0.00001 reduces by more than 0.5 (maximum value of the MCC metric is 1). This means

that the accuracy of pruned models with 90% sparsity is less than half that of baseline models. At the same final

sparsity and learning rate the median delta reliability bias increases by 0.18, indicating that substantial performance

discrepancies exist between the male and female subgroups.

A possible explanation for our results is that the learning rate optimizes the discovery of structure in the training

data to favour one subgroup over the other. This intuition aligns with recent empirical work that shows that top

performing deep neural networks can have very similar accuracy, but large variance in other performance aspects

such as inference latency due to hyper-parameter tuning [33]. Similarly, a recent study on fixed-seed training of

deep learning systems shows high variance in fairness measures if experiments consist of a single run with a fixed

seed [48]. Based on our results, developers can choose a larger pruning learning rate, like 0.001, during model

optimization to reduce the likelihood of unintended bias and unexpected accuracy degradation, especially when

pruning models to high sparsities. While this rule-of-thumb is useful given our current knowledge, further research

is needed to fully characterize the impact of the pruning learning rate on model performance and bias. We thus

suggest that developers empirically validate and optimize the learning rate during pruning.

To conclude our detailed analysis of interaction effects arising during model pruning, we examine how the

interactions between dataset, architecture, sample rate and pruning learning rate affect change in reliability bias in

Figure 11. Across datasets, architectures and sample rates we observe the general trend which we have already

ACM Trans. Softw. Eng. Methodol.



22 • Hutiri, et al.

Fig. 10. Interaction effect of final sparsity and pruning learning rate on change in accuracy (left) and change in

reliability bias (right). At final sparsities above 0.5 smaller learning rates significantly reduce MCC scores and

increase reliability bias.

identified in the previous figure: the smaller the learning rate, the more biased models become. Careful examination

of the results across architectures and sample rates also reveals trends similar to those we observed with pre-

processing parameters: the increase in reliability bias due to pruning is greater for the light-weight low latency

CNN architecture and the lower sample rate of 8kHz, as indicated by higher medians and larger IQRs. This trend

is stronger at smaller learning rates. As with the pre-processing parameters, the mswc_rw dataset presents an

exception to this observation. For this dataset median delta reliability bias across learning rates shows no clear

trend, while the IQRs are always large when compared to the IQRs of the other datasets.

Figure 11 reveals a further insight when comparing results across datasets. The reliability bias of models trained

on the google_sc and mswc_en datasets is less affected by the pruning learning rate than what is the case for

models trained on the remaining datasets. These two English language datasets have low median delta reliability

bias values and a small IQR. A likely contributor to these results is that English is the best resourced language,

with the largest available quantity of data. The English datasets in our study thus include more utterances per

keyword, more unique speakers per keyword and better representation of speakers and utterances across keywords

in the validation and test sets. Data quantity and representation, however, may not explain the entire effect. The

mswc_de and mswc_fr datasets have very similar statistics across the keywords, genders and dataset splits, with

the mswc_de dataset being 13% larger than the mswc_fr dataset. Yet, the change in reliability bias for mswc_de

models is larger and more variable than that of mswc_fr models. Further research is needed to understand the

source of this variability. For developers, our results highlight that training, validation and test datasets need to be

large enough and representative across groups of users to ensure robust results and avoid bias. Considering that

German and French are, after English, two of the best resourced languages in the Mozilla Common Voice corpus5,

this may mean in practice that developers need to collect context and application specific datasets to evaluate bias.

Key insights: Polynomial decay is a more robust pruning schedule than constant sparsity, and a larger pruning

learning rate, like 0.001, reduces the likelihood of unintended bias and unexpected accuracy degradation.

These design choices are particularly important when pruning models to sparsities greater than 50%, beyond

which accuracy and reliability bias can deteriorate dramatically. The increase in reliability bias due to pruning

5https://commonvoice.mozilla.org/en/languages
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Fig. 11. Interaction effect between dataset, architecture, sample rate and pruning learning rate on change in

reliability bias. Across datasets the general trend indicates that the smaller the learning rate, the more biased

models become. The median change in reliability bias of the google_sc and mswc_en datasets is less affected by

the pruning learning rate than that of the remaining datasets.

is greater for smaller architectures and at lower sample rates. This trend is stronger at smaller learning rates.

Training, validation and test datasets need to be large enough and representative across groups of users to

ensure robust results and avoid bias.

6.3 Summary of Results

We conducted empirical experiments for an audio KWS task to investigate the impact of a comprehensive

set of design choices on accuracy and reliability bias during model training and optimization. During model

training we investigated design choices related to the data sample rate and pre-processing parameters. We also

considered how models trained with a light-weight architecture are affected by the sample rate and pre-processing

parameters. Analyzing the results of 17280 experiments on 5 datasets showed that median and interquartile range

(IQR) of reliability bias tend to be greater at lower sample rates and for light-weight architectures. Whether

reliability bias favours or is prejudiced against a group of people was strongly influenced by the training dataset.

Overall, male speakers were favoured by models. Model accuracy was lower at lower sample rates and for light-

weight architectures. An exception to the overall trends were models trained on the mswc_rw dataset, which had

considerably lower accuracy and favoured female speakers.

With regards to pre-processing parameters, we found feature type and dimensions to impact KWS accuracy

and reliability bias. These effects were further influenced by the training dataset. In general, MFCC type features

performed better than log Mel spectrograms. However, in some instances they also increased reliability bias,

prejudicing models against females and favouring males. For MFCC features, reducing the feature dimensions by

using fewer Mel filter banks and fewer cepstral coefficients had a negligible impact on accuracy and reliability bias.

This presents an opportunity to reduce computational demands for on-device ML applications.

During model optimization we investigated design choices related model compression, and specifically pruning.

Analyzing the results of 12168 experiments on 5 datasets, we found polynomial decay to be a more robust pruning

schedule than constant sparsity. The smaller the pruning learning rate, the more pruning increased reliability bias

and decreased accuracy of baseline models. We found that a larger pruning learning rate, like 0.001, reduced

the change in reliability bias and accuracy. These design choices were particularly important when models were

pruned to sparsities greater than 50%. Beyond this, accuracy and reliability bias deteriorated dramatically. As with

pre-processing parameters, the increase in reliability bias due to pruning was greater for light-weight architectures
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and at lower sample rates. This trend was stronger at smaller learning rates. Finally, we found that pruning results

varied across datasets, with English language datasets showing a smaller increase in reliability bias due to pruning

than other languages. One take-away from this is that training, validation and test datasets need to be large enough

and representative across groups of users to ensure robust results and avoid bias.

7 STRATEGIES TO MITIGATE RELIABILITY BIAS

In the previous section we presented empirical results and an analysis of the impact of design choices on accuracy

and reliability bias for an audio KWS task. Taking the insights gained through the study into consideration, we now

offer low effort strategies for mitigating reliability bias. We first consider strategies for model selection and then

discuss approaches for supporting design choices with targeted experimentation.

7.1 Model Selection

In the decision map presented in Figure 2 model selection can occur after training a new model, downloading

pre-trained models or optimizing a model. We consider model selection strategies that account for accuracy and

reliability bias after model training and after model optimization. Rather than considering reliability bias and

accuracy as a trade-off, we seek approaches that enable engineers to navigate multi-objective search scenarios

where high accuracy and low reliability bias are desired. In contrast to multi-objective criteria that have been

proposed during model training [36, 45], here we focus on multi-objective model selection as a post-processing

intervention.

7.1.1 Model Selection After Training. In §6.1 we explored in depth how model training design choices impact

reliability bias and accuracy. While our analysis presented important insights of trends that exist across datasets

and architectures, we also found that models exist that are accurate and that perform equally well for male and

female subgroups. A visual appreciation for this can be gained from Figure 5. Across datasets, architectures and

sample rates there are models that lie on or close to the diagonal on which male and female accuracy is equal. This

suggests that pre-processing parameters may exist that produce models with high accuracy and low bias. However,

these models do not necessarily have the highest accuracy score. We thus considered search criteria for selecting

models based on accuracy and reliability bias. Listed below are three criteria we used to select model � from �

trained models � by optimizing for:

(1) high accuracy: select � if ���� =��� (���1, ..., ����) for � in �

(2) low bias: select � if ����������� ����� =���(����������� ����1, ..., ����������� �����) for � in �

(3) low bias + high accuracy: select � if ���� >= 0.985 ∗��� (���1, ..., ����) for � in � and

����������� ����� =���(����������� ����1, ..., ����������� ����� ) for � where���� >= 0.985∗��� (���1, ..., ����)

for � in �

We consider the high accuracy criteria as a baseline, as this is the typical strategy followed by engineers that

do not consider bias. The low bias criteria presents the opposite scenario, where only reliability bias informs

model selection. Finally, the low bias + high accuracy criteria considers accuracy as a satisficing metric while

minimizing reliability bias. This criteria selects the model with the lowest reliability bias, provided that it has an

accuracy score within a 1.5% threshold of the maximum accuracy. A reasonable threshold value should be selected

in accordance with the application requirements. The multi-objective approach allows us to explore alternative

models for deployment.

Table 9 shows the MCC (accuracy) score and reliability bias for the best models trained on the google_sc dataset,

selected according to the three criteria. We find that the low bias + high accuracy criteria selects models with a

low reliability bias across architectures, while retaining an MCC score close to the high accuracy criteria. For the

CNN architectures, this criteria reduces reliability bias by 15.7 and 1.7 fold for models trained with 16kHz and

8kHz sample rates respectively. For the 8kHz low latency CNN model, reliability bias is reduced 22.3 fold. For the
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16kHz low latency CNN architecture the model with the highest accuracy also has the lowest reliability bias and

thus experiences no reduction. By comparison, models selected using only low bias as selection criteria have a

very low reliability bias. However, this comes at the cost of an accuracy drop between 3.2% and 6.1%, which is

considerably greater than the desired 1.5% threshold and will degrade performance for both subgroups.

model selection

criteria metric

16kHz

CNN

8kHz

CNN

16kHz

low latency CNN

8kHz

low latency CNN

high accuracy MCC score 0.877 0.868 0.804 0.778

reliability bias 1.2e-2 9.8e-3 6.6e-4 4.1e-2

low bias MCC score 0.849 0.815 0.762 0.740

reliability bias 1.8e-4 1.9e-4 1.2e-4 1.6e-4

low bias + high accuracy MCC score 0.872 0.861 0.804 0.775

reliability bias 7.7e-4 5.9e-3 6.6e-4 1.8e-3

Table 9. Table of MCC (accuracy) scores and reliability bias for models trained on the google_sc dataset and

selected for top performance based on three criteria: 1) high accuracy 2) low bias 3) low bias + high accuracy.

Comparison across metrics shows that the low bias + high accuracy criteria, which accepts a marginal drop in

accuracy of up to 1.5%, selects models with considerably lower bias than the high accuracy strategy.

Instead of selecting maximum or minimum values, the selection criteria can be modified to select the � best

models under that criteria. We followed this approach choosing � = 3 best models for a dataset, model architecture

and sample rate triplet to select baseline models for the pruning experiments. The low bias + high accuracy criteria

did not return valid models for all triplets, which is the reason for the unequal number of baseline models in Table 3.

Next we consider how these selection criteria hold up after pruning.

7.1.2 Model Selection After Pruning. For the pruning experiments in §6.2 we selected the top 3 models per

architecture and sample rate for each model selection criteria. We now consider the post-pruning performance

of models selected with different criteria. In Figure 12 we show the delta (i.e. change in) MCC score (top) and

delta reliability bias (bottom) after pruning, for models selected under the three criteria after training. In the

density distributions in the figure accuracy increases in the direction of positive change, meaning that delta MCC

distributions that peak to the right of zero are desirable. Conversely, reliability bias decreases in the direction of

negative change, meaning that delta reliability bias distributions with peaks to the left of zero are desirable. The

delta MCC distributions peak just left of zero (CNN architectures) or on zero (low latency CNN architectures),

indicating that the majority of models with these architectures experience a decline in accuracy. The shape of the

distributions is similar for different selection criteria under the same architecture and sample rate, with the accuracy

of low bias models (which have lower baseline accuracy) increasing slightly more after pruning.

The shapes and peaks of the delta reliability bias distributions vary across model selection criteria. This indicates

that the model selection criteria impact reliability bias after pruning. A further confirmation of this is presented in

the statistical analysis in Table 8, where the reliability bias of the baseline model has a statistically significant effect

on delta reliability bias due to pruning. Analyzing the distributions, we can see that the distributions of models

selected for low bias (blue) lie furthest to the right. This means that the reliability bias of these models increases

the most after pruning. This is not surprising, as the lower bound of the reliability bias measure is zero and models

with low bias are very sensitive to small changes in reliability bias. However, this can also indicate that models

selected for low bias may loose some of their good bias properties during pruning. The distributions of models

selected for high accuracy (orange) lie furthest to the left. These models typically started out with higher reliability
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bias after training, which makes them less sensitive to changes in reliability bias and thus better able to retain their

reliability bias scores.

Fig. 12. Change in MCC (accuracy) score and change in reliability bias of models after pruning. Models were

selected based on three selection criteria: high accuracy (orange), low bias (blue), and high accuracy + low bias

(green). Delta MCC is better when greater, delta reliability bias is better when smaller. The selection criteria has no

evident effect on delta MCC, but does affect delta reliability bias.

In Figure 15 in the Appendix we visualize the distribution of MCC scores and reliability bias for the selection

criteria. Right of the peak (i.e. in the higher accuracy range), the MCC score distributions for the high accuracy

criteria and the low bias + high accuracy criteria lie very close to each other. After pruning models selected for high

accuracy and for low bias + high accuracy thus have similar MCC scores. For reliability bias the distribution of the

low bias + high accuracy criteria lies between the low bias and high accuracy distributions. The low bias + high

accuracy criteria thus results in models with lower bias after pruning than the high accuracy criteria. Overall, this

makes the low bias + high accuracy criteria a good choice to select a range of models for pruning.

Finally we reapply the same model selection criteria that we previously applied after training, after pruning.

Table 10 shows the mean and standard deviation of accuracy and reliability bias across sparsities for the three

selection criteria for pruned models trained on google_sc. We observe that mean reliability bias can be improved

by an order of magnitude by choosing the low bias + high accuracy criteria rather than the high accuracy criteria.

Models selected with the low bias criteria suffer a large drop in accuracy. While the low bias criteria offers

lower reliability bias than the low bias + high accuracy criteria, the latter already has a low mean and variance in

reliability bias, making additional reductions less impactful. For all models the variance of metrics across sparsities

is relatively low, which is supported by our earlier observation that models trained on the google_sc dataset are less

affected by pruning hyper-parameters (see Figure 11). Across all datasets the low bias + high accuracy criteria

selects models with similar accuracy and lower reliability bias than the high accuracy criteria. This outcome is not

surprising, as the purpose of a multi-objective criterion is precisely to satisfy multiple objectives. The value of our

analysis lies in empirically validating the obvious rather than in finding surprise: engineers can reduce bias in audio
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KWS with little effort by applying a multi-objective criterion during model selection, choosing models that satisfy

an accuracy condition while minimizing bias.

criteria high accuracy low bias + high accuracy low bias

metric MCC score reliability bias MCC score reliability bias MCC score reliability bias

mean var mean var mean var mean var mean var mean var

16kHz CNN 0.885 1.2e-02 1.4e-02 9.6e-03 0.879 1.1e-02 4.0e-03 5.5e-03 0.823 5.3e-02 6.5e-04 4.0e-04

8kHz CNN 0.876 9.2e-03 6.5e-03 1.8e-03 0.870 8.9e-03 1.1e-03 6.7e-04 0.851 1.9e-02 2.9e-04 2.6e-04

16kHz llCNN 0.808 1.8e-02 8.9e-03 7.0e-03 0.804 1.7e-02 1.4e-03 1.1e-03 0.772 2.3e-02 4.9e-04 4.1e-04

8kHz llCNN 0.785 2.5e-02 1.0e-02 7.6e-03 0.781 2.4e-02 1.8e-03 2.1e-03 0.761 3.5e-02 4.9e-04 4.9e-04

Table 10. Mean and variance of MCC scores and reliability bias across pruning sparsities (0.2, 0.5, 0.75, 0.8, 0.85,

0.9) for the three model selection criteria. Models have been trained on the google_sc dataset. Models with lower

bias can be selected for all sparsities at an accuracy cost of less than 1.5%.

7.1.3 Summary of Model Selection Strategy. Engineers should use a multi-objective criterion that considers

accuracy and reliability bias to select models that have high accuracy and low bias after training or after pruning.

We propose that engineers set a tolerance that controls the drop in accuracy from the maximum value, thus using

accuracy as a satisficing metric while minimizing reliability bias. The tolerance value should be determined from

application requirements. If model training is followed by pruning, a small number of top models should be selected

for pruning using high accuracy and low bias + high accuracy strategies.

7.2 Supporting Design Decisions with Targeted Experimentation

In §3 we presented a map of design choices arising in the on-device ML workflow. We then showed empirically that

these design choices can lead to disparate performance of audio KWS models for males and females. Our analysis

in §6 demonstrates that even when engineers make reasonable decisions about training and optimization parameters

(see Table 1) their choices can lead to models with widely different accuracy and bias properties. Especially

when training light-weight architectures or processing data at low sample rates, systematic experimentation is

a necessary strategy to support design decisions and mitigate bias. We have demonstrated that iterating over

pre-processing parameters during training, and pruning hyper-parameters during model compression can help

engineers train models with high accuracy and low bias. However, experimentation comes at a cost: each iteration

requires computational resources, takes time and consumes energy. Where a single audio KWS model takes only a

couple of minutes to train, we trained 17280 models, pruned 12168 models and ran our experiments for several

days. This is a costly undertaking.

Rather than replicating our approach, engineers should take the resource footprint and cost of model training

into account, and target their experiments to iterate over values that are likely to yield high accuracy, low bias

models. To this end we propose revised design choice variable values based on the insights we gained through

our experiments in Table 11. Given these reduced options, engineers only need to train 48 models per sample rate

and architecture, and run at most 24 pruning experiments for low sparsities (12 experiments for higher sparsities

of more than 50%). This targeted approach to experimentation is thus a feasible strategy for engineers to use

data-driven decision making to mitigate bias in on-device ML workflows.
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Design action Design choice Choice variable (unit) Variable values

Train new model input features | sample rate sample rate (kHz) determined by application

Train new model input features | pre-processing feature type MFCC

Train new model input features | pre-processing # Mel filter banks 20, 32

Train new model input features | pre-processing # MFCCs 10, 11

Train new model input features | pre-processing frame length (ms) 20, 25, 30, 40

Train new model input features | pre-processing frame step (% frame length) 40, 50, 60

Train new model input features | pre-processing window function Hamming

Optimize model light-weight architecture model architecture determined by application

Optimize model model compression | pruning final sparsity (%) determined by application

Optimize model model compression | pruning pruning frequency 10, 100

Optimize model model compression | pruning pruning schedule polynomial decay

Optimize model model compression | pruning pruning learning rate 1e-4, 1e-5 for sparsities < 50%; 1e-3

for sparsities > 50%

Model selection selection strategy criteria high accuracy, low bias + high accu-

racy

Model selection selection strategy # best models 3

Table 11. Recommended design choice variables and values for audio KWS to mitigate bias while reducing resource

consumption during experimentation

8 DISCUSSION

We now take a higher level perspective to reflect on the overarching implications of our work on bias in on-device

ML. We first discuss reliability bias as a source of unfairness and discrimination in on-device ML and then reflect

on limitations of the study.

8.1 Reliability Bias as a Source of Unfairness and Discrimination in On-device ML

On-device ML applications are becoming increasingly prevalent in our day-to-day lives, as consumers’ privacy

concerns and large volumes of sensor data are motivating a shift to run deep neural networks on devices rather than

the cloud. Despite the prevalence of on-device ML applications, known bias challenges in ML systems, and the

material consequences of system failure, bias in on-device ML is understudied. In this paper we set out to study

sources of bias in on-device ML that have not been considered in the domain, and that are overlooked in current

research on ML fairness.

When interacting with services that make use of on-device ML, users are justified to expect reliable performance,

irrespective of their demographic, social or economic attributes. We defined reliability bias as systematic device

failures due to on-device ML performance disparities across user groups. Reliability bias is a particular concern for

on-device ML as it counter-acts the promise of technology-enabled service access, an important value proposition

of on-device ML. If reliability bias remains unidentified and is not accounted for, it can be a source of unfairness

in on-device ML systems. Unfair on-device ML systems that are deployed at scale can lead to a discriminatory

service infrastructure that restricts who has access to services, and how these services can be accessed.

Our empirical study shows that design choices made by engineers in each stage of the on-device ML workflow

can introduce reliability bias when deploying ML as a system component. While bias in on-device ML can be cast

as an AI ethics concern, we consider it important to also approach it as a matter of responsible design. Based on
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our findings we do not consider reliability bias as an immutable property of a particular model or system. Instead,

we position that reliability bias arises from design choices that amplify or reduce disparate predictive performance

across groups of users based on their personal attributes. Engineers thus have an active role to play to detect and

mitigate reliability bias. While some design choices may lie beyond the immediate control of engineers, they have

full control over others. Measuring bias in the on-device ML development workflow is the first step that engineers

should take to practice responsible design and make a commitment to building fairer technology systems.

We have focused our evaluation of reliability bias on performance discrepancies in predictive accuracy. In

on-device ML applications, system efficiency is another important performance metric that interacts with accuracy.

For example, a KWS system with poor predictive performance can require several user attempts to activate the

system. This can increase computations, which leads to increased power consumption and faster drainage of a

device’s battery. Reliability bias should thus also be considered for system efficiency. The bias measure that we have

proposed can be extended easily to characterize reliability bias due to system (in)efficiency. We will investigate this

in future work. Additionally, we note that our empirical study is focused on audio-based ML. Although audio is

a prominent data modality in on-device ML, we are cognizant that other data types (e.g. images) are also used.

Future work can extend our methodology to different modalities and new learning tasks to investigate reliability

bias in them.

8.2 Limitations

In quantifying an unobservable, abstract construct like fairness, bias measures often make assumptions about what

is fair. Yet, fairness is a contested construct [28] that is underpinned by the values of those that define it. This makes

it important to state assumptions explicitly to avoid mismatches between the construct that is measured, and its

quantified operationalization. In this study we have made the assumption that false positive and false negative

error rates are equally important across all keyword classes. We have operationalized this assumption by using the

Matthews Correlation Coefficient (MCC) to quantify reliability bias. While the MCC is an accepted metric for

multiclass classification, it does not capture the disparate impact that false positives and false negatives may carry

in particular application scenarios. For example, a KWS system in an emergency care application that has a high

false negative rate for the keyword "help" is likely to have a more detrimental impact on affected users than a home

entertainment system with a high false positive rate for the keyword "lights on". Characterising harms associated

with applications and identifying acceptable error rates is an important area for future research.

We motivated our use of a parity-based bias measure by claiming that ground truth labels in KWS are exactly

known and undisputed. While this avoids bias propagation through labelling choices, constructing groups remains

a normative design decision that requires careful consideration. In our audio KWS study we constructed groups

based on a speaker’s gender. Our approach to labelling voice samples with gender was limited to a binary gender

classification system and a crowd-sourced labelling campaign. Even though the MSWC gender labels are self-

annotated, binary gender representation removes individuals that do not fit within this classification system from the

bias evaluation. Crowd-sourced labelling can introduce further misclassification [52]. Male and female voices can be

higher or lower pitched than what a data worker perceives as normal for that gender, and misclassified accordingly.

Gender is also just one of many demographic attributes that influences the human voice [56]. Subgroups established

along other speaker attributes can reveal further dimensions of bias and should be investigated in future work.

While dataset representation was not the focus of this study, it oftentimes is an important contributor to bias.

We took this into consideration and carefully constructed gender-balanced dataset splits when we designed our

experiments. Our gender-balancing protocol resulted in balanced datasets across keyword-speaker pairs (see

Table 2) but unequal utterances/keyword across dataset splits and genders. When the number of unique speakers

and utterances/keyword in a dataset are small, it becomes difficult to construct representative datasets, which can

affect the reliability of results. In this study, our dataset construction choices may explain some of the performance

ACM Trans. Softw. Eng. Methodol.



30 • Hutiri, et al.

deviations we observed for the MSWC Kinyarwanda dataset (see Figure 11), which contained an order of magnitude

fewer different speakers than the other datasets. Finding ways for creating balanced datasets and evaluating bias

when data availability across groups is variable remains an important open challenge.

We note that our study is limited to investigating bias in CNN architectures. These architectures are very popular

for speech and vision related tasks in on-device ML. We chose to focus on one architecture to study how light-weight

architectures, a model optimization design choice to reduce the model size, impacts reliability bias. Future work

should also examine reliability bias in other architectures. Furthermore, while this study investigates the design

choices that we deemed most likely to impact bias, future work should examine the impact of design choices that

we did not examine, such as quantization. Despite these limitations, our investigation of performance disparity

provides necessary insights that highlight the need of addressing bias in on-device settings. Studying bias in the

emerging field of on-device ML is thus an important research direction for the software engineering community.

9 CONCLUSION

Billions of devices deploy on-device ML today. Despite bias and fairness being a major area of concern in machine

learning (ML), they have not been considered in on-device ML settings. Biased performance impacts device

reliability, and can result in systematic device failures due to performance disparities across user groups. This can

inconvenience and even harm users. Our study is the first investigation of bias in development workflows in the

emerging on-device ML domain, and lays an important foundation for building fairer on-device ML systems.

In this study we investigate the propagation of bias through design choices in the on-device ML workflow,

and identify reliability bias as a potential source of unfairness. Reliability bias arises from disparate on-device

ML performance due to demographic attributes of users, and results in systematic device failure across user

groups. Drawing on definitions of group fairness, we quantify reliability bias and use the measure in empirical

experiments to evaluate the impact of design choices on bias in an audio keyword spotting (KWS) task, a dominant

application of on-device ML. Our results validate that seemingly innocuous design choices – a light-weight

architecture, the data sample rate, pre-processing parameters of input features, and pruning hyper-parameters for

model compression – can result in disparate predictive performance across male and female groups.

Given their context dependence and ubiquitous nature, developing inclusive on-device ML systems ought to be

an important priority for engineers. Our findings caution that design choices in the development workflow can have

major consequences for the propagation of reliability bias and consequently fairness of on-device ML. Based on

our findings, we suggest strategies for model selection and targeted experimentation to help engineers navigate

the gap between technical choices, deployment constraints, accuracy and bias during on-device ML development.

Taken together, our work highlights that engineers and the decisions they make have an important role to play to

ensure that the social requirement of inclusive on-device ML is realized within the constrained on-device setting.
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A APPENDIX

A.1 Experiment Setup: Datasets

Google Speech Commands keyword classes: ’bed’:0, ’bird’:1, ’cat’:2, ’dog’:3, ’down’:4, ’eight’:5, ’five’:6,

’four’:7, ’go’:8, ’happy’:9, ’house’:10, ’left’:11, ’marvin’:12, ’nine’:13, ’no’:14, ’off’:15, ’on’:16, ’one’:17,

’right’:18, ’seven’:19, ’sheila’:20, ’six’:21, ’learn’:22, ’stop’:23, ’three’:24, ’tree’:25, ’two’:26, ’up’:27, ’wow’:28,

’yes’:29, ’zero’:30, ’backward’:31, ’follow’:32, ’forward’:33, ’visual’:34

MSWC English keyword classes: ’about’: 0, ’after’: 1, ’also’: 2, ’been’: 3, ’could’: 4, ’first’: 5, ’from’: 6, ’have’:

7, ’however’: 8, ’just’: 9, ’know’: 10, ’like’: 11, ’many’: 12, ’more’: 13, ’most’: 14, ’only’: 15, ’other’: 16, ’over’:

17, ’people’: 18, ’said’: 19, ’school’: 20, ’some’: 21, ’that’: 22, ’they’: 23, ’this’: 24, ’three’: 25, ’time’: 26, ’used’:

27, ’were’: 28, ’what’: 29, ’when’: 30, ’will’: 31, ’with’: 32, ’would’: 33, ’your’: 34

MSWC German keyword classes: ’aber’: 0, ’alle’: 1, ’auch’: 2, ’dann’: 3, ’dass’: 4, ’diese’: 5, ’doch’: 6, ’durch’:

7, ’eine’: 8, ’gibt’: 9, ’haben’: 10, ’hauptstadt’: 11, ’heute’: 12, ’hier’: 13, ’immer’: 14, ’jetzt’: 15, ’kann’: 16,

’können’: 17, ’mehr’: 18, ’muss’: 19, ’nach’: 20, ’nicht’: 21, ’noch’: 22, ’oder’: 23, ’schon’: 24, ’sein’: 25, ’sich’:

26, ’sind’: 27, ’wenn’: 28, ’werden’: 29, ’wieder’: 30, ’wird’: 31, ’wurde’: 32, ’zwei’: 33, ’über’: 34

MSWC French keyword classes: ’alors’: 0, ’aussi’: 1, ’avec’: 2, ’bien’: 3, ’cent’: 4, ’cette’: 5, ’comme’: 6, ’c’est’:

7, ’dans’: 8, ’deux’: 9, ’donc’: 10, ’elle’: 11, ’fait’: 12, ’huit’: 13, ’mais’: 14, ’mille’: 15, ’monsieur’: 16, ’même’:

17, ’nous’: 18, ’numéro’: 19, ’plus’: 20, ’pour’: 21, ’quatre’: 22, ’saint’: 23, ’sept’: 24, ’soixante’: 25, ’sont’: 26,

’tout’: 27, ’trois’: 28, ’très’: 29, ’vingt’: 30, ’vous’: 31, ’également’: 32, ’était’: 33, ’être’: 34

MSWC Kinyarwanda keyword classes: ’abantu’: 0, ’ariko’: 1, ’avuga’: 2, ’bari’: 3, ’benshi’: 4, ’buryo’: 5,

’cyane’: 6, ’gihe’: 7, ’gukora’: 8, ’gusa’: 9, ’hari’: 10, ’ibyo’: 11, ’icyo’: 12, ’igihe’: 13, ’imana’: 14, ’imbere’:

15, ’kandi’: 16, ’kuba’: 17, ’kugira’: 18, ’kuko’: 19, ’kuri’: 20, ’mbere’: 21, ’muri’: 22, ’ndetse’: 23, ’neza’: 24,

’ntabwo’: 25, ’nyuma’: 26, ’perezida’: 27, ’rwanda’: 28, ’ubwo’: 29, ’umuntu’: 30, ’umwe’: 31, ’yagize’: 32, ’yari’:

33, ’yavuze’: 34
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A.2 Statistical Analysis: Design Choices Arising During Model Training

Model 1. First factorial ANOVA interaction model for model training design choices

model_inital = 'metric ~ C(dataset_name, Sum)+C(model_arch, Sum)C(resample_rate, Sum)+C(mfccs,

Sum)+C(mel_bins, Sum)+C(frame_length, Sum)+C(frame_step, Sum)+C(window_fn, Sum)+C(

dataset_name, Sum)*C(model_arch, Sum)*C(resample_rate, Sum)*C(mfccs, Sum)*C(mel_bins, Sum)

+C(dataset_name, Sum)*C(model_arch, Sum)*C(resample_rate, Sum)*C(frame_length, Sum)*C(

frame_step, Sum)*C(window_fn, Sum)'

Model 2. Final factorial ANOVA interaction model for effect of model training design choices on MCC

model_final_mcc = 'mcc ~ C(dataset_name, Sum)+C(model_arch, Sum)+C(resample_rate, Sum)+C(mfccs

, Sum)+C(mel_bins, Sum)+C(dataset_name, Sum)*C(resample_rate, Sum)*C(mfccs, Sum)+C(

model_arch, Sum)*C(mfccs, Sum)*C(mel_bins, Sum)+C(dataset_name, Sum)*C(model_arch, Sum)*C(

mfccs, Sum)+C(frame_length, Sum)+C(frame_step, Sum)+C(model_arch, Sum)*C(frame_length, Sum

)*C(frame_step, Sum)'

Model 3. Final factorial ANOVA interaction model for effect of model training design choices on reliability bias

model_final_bias = 'reliability_bias ~ C(dataset_name, Sum)+C(model_arch, Sum)+C(resample_rate

, Sum)+C(dataset_name, Sum)*C(resample_rate, Sum)+C(mfccs, Sum)+C(mel_bins, Sum)+C(

dataset_name, Sum)*C(model_arch, Sum)*C(mfccs, Sum)+C(dataset_name, Sum)*C(mel_bins, Sum)+

C(frame_length, Sum)'
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A.3 Impact of Pre-processing parameters

Fig. 13. Effect of MFCC dimensions on accuracy and reliability bias for 16kHz CNN models. Models without MFCC

features, i.e. models that directly use log Mel spectrograms as input features, tend to perform worse than those that

use MFCC features.

Fig. 14. Effect of log Mel spectrogram dimensions (# Mel fbanks) on accuracy and reliability bias, disaggregated by

input feature type for CNN architectures. The number of Mel filter banks clearly impacts models that directly use log

Mel spectrograms as input features.
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A.4 Statistical Analysis: Design Choices Arising During Model Optimization

Model 4. First factorial ANOVA interaction model for pruning hyper-parameters

model_inital = 'delta_metric ~ mcc_baseline + reliability_bias_baseline + C(dataset_name, Sum)

+C(model_arch, Sum)+C(resample_rate, Sum)+C(pruning_learning_rate, Sum)+C(pruning_schedule

, Sum)+C(pruning_frequency, Sum)+C(pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(

model_arch, Sum)*C(resample_rate, Sum)*C(pruning_learning_rate, Sum)*C(pruning_schedule,

Sum)*C(pruning_frequency, Sum)*C(pruning_final_sparsity, Sum)'

Model 5. Final factorial ANOVA interaction model for effect of pruning design choices on change in MCC

model_final_delta_mcc = 'delta_mcc ~ mcc_baseline + reliability_bias_baseline + C(dataset_name

, Sum)+C(model_arch, Sum)+C(resample_rate, Sum)+C(pruning_learning_rate, Sum)+C(

pruning_schedule, Sum)+C(pruning_frequency, Sum)+C(pruning_final_sparsity, Sum)+C(

model_arch, Sum)*C(pruning_learning_rate, Sum)*C(pruning_schedule, Sum)*C(

pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(model_arch, Sum)*C(resample_rate, Sum)

*C(pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(pruning_learning_rate, Sum)*C(

pruning_schedule, Sum)+C(dataset_name, Sum)*C(pruning_schedule, Sum)*C(

pruning_final_sparsity, Sum)+C(dataset_name, Sum)*C(pruning_learning_rate, Sum)*C(

pruning_final_sparsity, Sum)+C(resample_rate, Sum)*C(pruning_learning_rate, Sum)*C(

pruning_final_sparsity, Sum)'

Model 6. Final factorial ANOVA interaction model for effect of pruning design choices on change in reliability bias

model_final_delta_bias = 'delta_reliability_bias ~ mcc_baseline+reliability_bias_baseline+C(

dataset_name, Sum)+C(model_arch, Sum)+C(resample_rate, Sum)+C(pruning_learning_rate, Sum)+

C(pruning_schedule, Sum)+C(pruning_frequency, Sum)+C(pruning_final_sparsity, Sum)+C(

dataset_name, Sum)*C(model_arch, Sum)*C(resample_rate, Sum)*C(pruning_learning_rate, Sum)+

C(dataset_name, Sum)*C(pruning_learning_rate, Sum)*C(pruning_final_sparsity, Sum)+C(

pruning_schedule, Sum)*C(pruning_final_sparsity, Sum)+C(model_arch, Sum)*C(

pruning_final_sparsity, Sum)'
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A.5 Model Selection After Pruning

Fig. 15. MCC (accuracy) score and reliability bias of models after pruning. Models were selected based on three

selection criteria: high accuracy, low bias, and high accuracy + low bias. After pruning MCC is greatest for models

selected with a criteria that considers high accuracy. Similarly, reliability bias is lower for criteria that consider low

bias.
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